

High Efficiency Cross-Flow Microsand Filtration as Pretreatment in Desalination Applications

Apr 2022

Table of Content

- Background
- Process Design
 - Laser particle size distribution
 - VAF[™] self-cleaning screen filter + Vortisand[®] high-efficiency cross-flow microsand filter selection
 - Technology introduction
- Results & Discussions
 - Results with & without VAF
 - FeCl₃ auto-calculated dosing
- Conclusion
 - SDI < 5, average 3
 - Easy to operate
 - Less energy consumption & chemical usage, maintenance, instrument, WWTP
 - Recommendations

Background

- There has been much effort in energy reduction of main desalting step in seawater desalination.
- This study proposes to use a high efficiency cross-flow microsand filtration in the pre-treatment step.
- Current Seawater Desalination Pretreatment Process:

• Seawater Pretreatment with VAF and Vortisand:

• A typical traditional pre-treatment system would require 0.3-0.4kwh/m3, while a fine filtration system only requires about 1-2 bar pressure drop, which is equivalent to around 0.1-0.2kwh/m3

Process design: Feed water key characteristics

- Feed water:
 - Coarse screen filtered seawater from Tuas South Desalination Plant
 - TDS 31 34,000 ppm
 - Temperature 30 33'C,
 - pH 7.8-8.4
 - TSS 5-20mg/L
 - Turbidity 3 15 NTU

Process design: Feed water key characteristics

- Laser particle size distribution results show that the majority of the particles are submicron in size.
- High efficiency sand filters are able to filter up to sub-micron level, simple to operate and require simple cleaning steps, thus is the technology chosen to be tested for seawater pre-treatment.

	Particle Size (µm)	Differential Result							
		Unit : counts/mL				Unit : % counts			
		Data 1	Data 2	Data 3	Average	Data 1	Data 2	Data 3	Average
	0.5	504060	503310	505040	504137	92	92	92	92
7th Apr 2021	1	43810	44030	43950	43930	8	8	8	8
Seawater sample	10	690	680	780	717	<1	<1	<1	<1
	20	70	20	10	33	<1	<1	<1	<1
	25	10	10	10	10	<1	<1	<1	<1
	30	10	30	10	17	<1	<1	<1	<1
	50	<1	<1	<1	<1	<1	<1	<1	<1
evoqua	80	<1	<1	<1	<1	<1	<1	<1	<1

- Cross-flow microsand filtration enables much higher performance than traditional multimedia filters.
- MMF uses different layers of media for filtration.
 - Utilises depth filtration (300-700µm), 5-10 gpm/ft².
 - Requires higher backwash flowrate to achieve fluidisation of sand & anthracite. Roughly twice the filtration flowrate.
 - Only able to achieve **10 to 25-micron filtration**.

- Cross-flow microsand filtration enables much higher performance than traditional multimedia filters.
- MMF uses different layers of media for filtration.
 - Utilises depth filtration (300-700µm), 5-10 gpm/ft²
 - Requires higher backwash flowrate to achieve fluidisation of sand & anthracite. Roughly twice the filtration flowrate.
 - Only able to achieve **10 to 25-micron filtration**.
- Vortisand® HE cross-flow microsand(150µm) filtration.
 - Combines suspension & depth filtration, 20 gpm/ft² (4X)
 - Requires much lower backwash flowrate **40% of filtration flowrate**.
 - Able to achieve submicron filtration, SDI <5.

• Cross-flow device keeps solids continuously in suspension instead of pushing it into the sand and quickly plugging the media.

• Possibility to stack vessels for halving already compact footprint.

Particle count results, selection of guard-filter

- Raw seawater feed is from 2mm travelling screen filter, so a prefilter for the Vortisand® is needed.
- Two stages of V-series[™] self-cleaning screen filters with 25 and 10-micron screen sizes were installed for flexibility in testing different running options.

	Differential Result								
Particle Size (µm)	Unit : counts/mL				Unit : % counts				
	Data 1	Data 2	Data 3	Average	Data 1	Data 2	Data 3	Average	
0.5	504060	503310	505040	504137	92	92	92	92	
1	43810	44030	43950	43930	8	8	8	8	
10	690	680	780	717	<1	<1	<1	<1	
20	70	20	10	33	<1	<1	<1	<1	
25	10	10	10	10	<1	<1	<1	<1	
30	10	30	10	17	<1	<1	<1	<1	
50	<1	<1	<1	<1	<1	<1	<1	<1	
80	<1	<1	<1	<1	<1	<1	<1	<1	

Evoqua's V-series[™] self-cleaning screen filter

- Most self-cleaning filters on the market uses piston or motor type mechanism.
- V-series[™] filters utilises a reverser & pawl design to generate an efficient cleaning path of the suction nozzles.
- The self-cleaning function is activated by just opening a flush valve and the system pressure provides the motive force for the whole mechanism.
- Only instrumentation is a flush valve & DP switch.

Process Design – Final Design

• Jar testing was performed to choose a suitable coagulant, FeCl₃.

Test Results – Lab readings

Test Results – Onsite readings

Process Improvement: FeCl₃ & Backwash duration auto-calculation

- Initially the FeCl₃ dosage and backwash duration was manually controlled.
- After collection of several data points, FeCl₃ auto dosing and backwash duration calculation vs. feed turbidity was implemented and continually finetuned.

Vortisand® maintenance regime

- Operation: ~30 to 40 minutes runtime
- Cleaning with sodium hypochlorite once a week @ ~185ppm free chlorine "in the vessel" (with no free chlorine dosing upstream).
- Once a month HCl cleaning @ pH <3, 1hr soak

Challenges encountered

- If an incoming high turbidity/algae bloom incident occurs, damages to sand unrecoverable.
 - Implemented incoming turbidity limit trip @ 18NTU.

- Preferably require DAF before Vortisand®, which also can't take oil & grease in the event of oil-spill incidents in Singapore waters.

- Sampling solenoid turbidity valves cause erratic reading
 - Implemented turbidity analyser back-pressure control.

Comparison of Vortisand® and UF

WATER TECHNOLOGIES

Description	Vortisand®	UF			
Design Flow rate	8-10 m ³ /h	10 m ³ /h			
Filtrate Turbidity	<0.2 NTU	<0.1 NTU			
Filtrate SDI	< 5, average 3	<3			
Energy Consumption	0.04 kWh/m3	0.13 kWh/m3			
Chemical Cleaning	Only to control bootorial growth when no	Acid/Caustic/Disinfectant:			
	disinfectant dosed upstream	 Chemical Enhanced Backwash ~ Daily/Weekly Cleaning In Place (with soak) ~ Weekly/Monthly 			
Cleaning chemicals	Biocide may be used during backwash if no continuous Sodium Hypochlorite dosing, acid cleaning may be used every 2-3 months if FeCl3 as coagulant	Chloric Acid (Or Sulfuric Acid), Sodium Hypochlorite, Citric Acid, Sodium Hydroxide			
Wastewater need neutralization?	Not required	Yes			
Media shelf life or membrane life	5 years (recommended)	3-5 years (typical)			
Recovery rate	~80% (When scale up, it could be up to 95%)	~90% (with air scouring) (Note: w/o air scouring, recovery can be lower)			

Backup Slides

SDI filter papers

THANK YOU

